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Abstract

In deformed rocks fault/slip data are commonly heterogeneous due to variation of the tectonic stress field. Previous methods for separating

heterogeneous fault/slip data are based upon hard division, and do not take into account the indeterminable nature of the data. The

indeterminability is controlled by many factors such as inaccuracy in the measurement of fault/slip data, heterogeneity of the stress field, and

similarity between controlling stress tensors. A new method for separating heterogeneous fault/slip data uses fuzzy C-lines clustering

algorithms. It is applied in Fry’s (1999) sigma space, in which nonlinear stress inversion is rendered as a solution of hyperlines normal to the

girdle of the datum vectors. The method is efficient and quick to make the optimal division and the optimal stress estimates for any chosen

division number. From a variety of estimated divisions, the concept of a partition coefficient is introduced (K), which is maximised to

determine the best division. As the partition coefficient is only dependent upon the division number and the internal structure of the fault/slip

data, the best division obtained in this way is more sound and objective than with previous methods. Two examples illustrate the validity of

this method.
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1. Introduction

Stress inversion from fault/slip data is an important

technique in brittle tectonics for quantification of in-situ

palaeostress states in the upper crust (e.g. Carey and

Brunier, 1974; Angelier, 1979, 1994; Etchecopar et al.,

1981; Armijo et al., 1982; Simón-Gómez, 1986; Huang,

1988; Kleinspehn et al., 1989; Xie and Liu, 1989;

Fleischmann and Nemcok, 1991; Hardcastle and Hills,

1991; Will and Powell, 1991; Wojtal and Pershing, 1991;

Nemcok and Lisle, 1995; Fry, 1999, 2001; Nemcok et al.,

1999; Nieto-Samaniego, 1999; Yamaji, 2000; Lisle et al.,

2001; Shan et al., 2003). It assumes homogeneity of the

stress field, independence between neighboring faults, and

parallelism between the maximum resolved shear on the

fault plane and fault striation. Obviously, these assumptions

render the conventional inversion technique applicable to

homogeneous (or monophase) fault/slip data—a case that

the slips recorded on the fault planes occurred in a single

phase with the same stress field. However, the tectonic stress

field in a region often varies with time by virtue of temporal

variation in either far-field forces or near-field forces. Faults

in the brittle crust are inherently weak zones, and are readily

reactivated in subsequent stress fields (e.g. Nemcok et al.,

1999). Therefore, polyphase fault/slip data are more

common than monophase fault/slip data in the field. What

is more, in the presence of heterogeneous fault/slip data,

stress estimated through applying the conventional

inversion technique is difficult to interpret (Nemcok and

Lisle, 1995).

In order to extend stress inversion techniques to

heterogeneous fault/slip data, the critical problem is how

to separate the data into homogeneous subsets. Not all

methods (e.g. Hardcastle and Hills, 1991; Nemcok and

Lisle, 1995; Nemcok et al., 1999; Yamaji, 2000) succeed in

this task. We will not elucidate here their potential

disadvantages in separating heterogeneous data, but encou-

rage interested readers to refer to the discussion in our paper

about a method based on hard division (Shan et al., 2003).
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There are two possible shortcomings of existing methods

for heterogeneous fault/slip data. First, nearly all these

methods specifically pertain to hard division. That is to say,

they divide the fault/slip data set into independent subsets,

according to some criterion or other. The alternative is

called soft division. In reality, the usual nature of fault/slip

data, as with many other geological data, is indetermin-

ability. This may be caused by a number of factors such as

inaccuracy in the measurement of fault/slip data, hetero-

geneity of stress field, and similarity between controlling

stress tensors. Indeterminability will have an effect on stress

estimation, particularly if the controlling stresses are similar

to each other (Shan et al., 2003). This is not taken into

account by existing methods. Secondly, for a given fault/slip

data set, the issue of the optimal number of subsets remains

a problem, although it may be determined through analyzing

other deformational structures in the region of interest.

Apart from the empiricism adopted by most methods, we

generally lack a sound objective criterion controlled by

internal structure of the fault/slip data set for defining the

optimal number of subsets.

The goal of this communication is to try to overcome

these shortcomings by presenting a new method based on

soft division. In this method, we apply fuzzy clustering to

heterogeneous fault/slip data, and define the optimal number

of subsets by looking for the maximum partition coefficient

under differing subset numbers (no less than two). Two

examples demonstrate the validity of the method.

2. New technique

2.1. Fry’s (1999) sigma space

In standard inversion methods, the traction caused by

stress difference on the fault plane is considered null in

direction perpendicular to the striation in inversion methods

(Angelier, 1979). The traction equals

nssT ¼ 0 ð1Þ

where s is the unknown stress tensor, n is the unit vector

normal to the fault plane, s is the directional vector

perpendicular to the fault striation within the fault plane

and the superscript T is the operation of matrix

transposition.

Considering symmetry of the stress tensor, Eq. (1) may

be rewritten as:

1

2

X3

i¼1

X3

j¼i

ð2 2 dði; jÞÞðnisj þ njsiÞsij ¼ 0 ð2Þ

where n ¼ [n1, n2, n3], s ¼ [s1, s2, s3], sij is the element of

stress tensor, and d(i,j) is the Kronecker delta function. d(i,j)

equals one when i ¼ j or zero when i – j.

Let t stand for stress vector [s11, s22, s33, s12, s13, s23]

and b for datum vector [n1s1, n2s2, n3s3, (n1s2 þ n2s1)/2,

(n1s3 þ n3s1)/2, (n3s2 þ n3s2)/2]. Despite its apparently

nonlinear feature, Eq. (1) may change into a linear equation

after the transformation. In the parameter space—Fry

(1999) named it as sigma space—fault/slip data in response

to the same tectonic phase will form a hyperplane, or

possess a linear structure in sigma space, perpendicular to

which is the solution of stress vector. Furthermore, in order

to reduce the parameter space without any distortion and to

reach a specific solution always requires additional

constraints (Fry, 1999; Shan et al., 2003).

For a number of N homogeneous fault/slip data, stress

inversion may turn out to be a constrained minimization of

an objective function F(t)—the sum of the square

Euler distances of stress solution to datum vectors. The

minimization is:

minFðtÞ ¼
XN
i¼1

ðbit
TÞ2 ¼

XN
i¼1

tðbib
T
i Þt

T ¼
XN
i¼1

tAit
T

¼ t
XN
i¼1

Ai

 !
tT ¼ tAtT ð3Þ

subject to

ttT ¼ 1 ð4Þ

where bi is the datum vector related to the ith fault/slip

datum, Ai ¼ bib
T
i , and A is the sum of Ai. The matrices A and

Ai are symmetric by definition. Vectors bi (i ¼ 1,2,3,…,N)

are normalized to guarantee that each of them has the same

contribution to the objective function F(t). For convenience,

we will make no difference in notation between the

unnormalized and normalized datum vectors. In most

cases, the difference between them is relatively minor (see

Fry’s (1999) tables).

Shan et al. (2003) have proved that in this case, the unit

eigen vector having the least eigen value of the matrix is the

optimal stress vector.

2.2. Fuzzy classification

In terms of the indeterminability of fault/slip data

discussed in the introduction, it is appropriate to consider

that they are fuzzy when attributing them to any subsets.

The membership of the jth fault/slip vector in the ith subset,

or uij, is a continuous function:

uij ! 0; 1½ �; i ¼ 1; 2;…;C; j ¼ 1; 2;…;N ð5Þ

XC
i¼1

uij ¼ 1; j ¼ 1; 2;…;N ð6Þ

where C is the division number of the fault/slip data set,

generally no more than four. Clearly, hard division in which

uij is ether zero or one, is a special case of soft division.

For heterogeneous fault/slip data, the membership of

each datum vector is added as weight to the squared Euler

distance of the data vector to the stress vector. The objective
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function is defined as:

Fðu; tmÞ ¼
XN
j¼1

XC
i¼1

uk
ijDðtmi; bjÞ

2 ¼
XN
j¼1

XC
i¼1

uk
ij bjt

T
mi

� �2
ð7Þ

where k is the weight exponent (.1), two in the examples

below for instance, and D(tmi,bj) is the Euler distance of the

jth datum vector bj to the ith stress estimate tmi. From the

above definition we can simply use the fuzzy C-lines

clustering algorithm (Bezdek, 1974; Bezdek et al., 1981;

Guo and Zhuang, 1993) to minimize the above objective

function F(u,tm). Only the membership and stress estimate

are unknown, but none of them can be solved indepen-

dently. With a stress estimate tm given, the optimal

membership u p is obtained through optimizing a new

composite objective function P(u,l) in which the constraint

of Eq. (6) is included:

minPðu;lÞ ¼
XN
j¼1

XC
i¼1

uk
ijDðtmi; bjÞ

2 2 l
XC
i¼1

uij 2 1

 !
ð8Þ

Provided S2
ij is uij. Let the partial derivatives of P(Sij,l) be

zero with respect to Sij and to l, respectively. Solving these

equations, we have an estimate of membership up
ij with a

stress estimate tm as given:

up
ij ¼

XC
l¼1

D tmi; bj

� �
D tml; bj

� �
0
@

1
A

2
k21

2
664

3
775

21

ð9Þ

With the membership given, the optimal stress estimate

tpm for each subset is obtained by the method of Shan et al.

(2003), as we do with the homogeneous data set in the above

section.

In fact, minimization of the objective function is reached

by an iterative process such that each of two unknowns is

solved independently using the above equation or the above

method. The iteration is not terminated until the resolution

meets our specification.

The procedure is summarized as follows:

1. Set the division number C (.1), the weight exponent k

(.1) and the resolution. The initial stress estimate tð0Þm is

given at random. Let h ¼ 0.

2. Calculate and normalize the datum vectors from the

fault/slip data.

3. Use Eq. (9) to solve the optimal membership u (h ), with

the stress estimate tðhÞm given.

4. Use the method of Shan et al. (2003) to solve the optimal

stress estimate tðhþ1Þ
m , with the membership u (h ) given,

and

5. Compare tðhþ1Þ
m with tðhÞm or u (h 21) with u (h ). If the

difference between them is outside the required resol-

ution, let h ¼ h þ 1 and return to step 3. If the difference

is at the resolution required, terminate the iteration and

output the result.

In the following examples, we set the resolution of the

membership of a datum vector in a subset to be 0.001, and

the weight exponent to be 2. The above algorithm is very

effective and quick to converge (Fig. 1). As our calculation

showed, the algorithm seems able to overcome local minima

in the parameter space, in that the result at the prescribed

resolution bears no relation to the initial value of stress

estimate tð0Þm .

Fig. 1. Maximum absolute misfit of the membership between two neighboring iterations. Short-length dashed line with squares is for case 1 with a division

number of three. Line with triangles is for case 2 with a division number of two. See the text for more explanation.
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2.3. Partition coefficient

The division of heterogeneous fault/slip data, obtained

through using the fuzzy C-lines clustering algorithm, varies

with the division number chosen. How to determine the best

division is a problematic issue for most existing methods for

separating heterogeneous fault/slip data. We introduce here

the partition coefficient (K) to provide a measure of the

acceptability of each division under different division

numbers. It is (Bezdek, 1974):

K ¼
XN
j¼1

XC
i¼1

up2
ij =N ð10Þ

where K is in a range from 1/C to 1. Generally, the larger the

value of K, the more acceptable the division. The division

with the maximum acceptability is generally considered the

best division that we are seeking. This is a comparatively

objective criterion that is only dependent upon internal

structure of the data.

3. Applications

3.1. Case one

In order to validate the above algorithm, polyphase

fault/slip data are simulated for numerically generated

monophase sets. Let the validation set of polyphase

fault/slip data consist of three monophase subsets, each

caused by stress with a stress ratio of two (Table 1). For

each tectonic phase, 20 fault/slip data are generated in

two steps by Monte-Carlo sampling. In the first step,

fault orientations are randomly selected from specific

ranges, including fault dip directions ranging from 0 to

3608 and dips from 45 to 858. In the second step, the

directions of maximum resolved shear on fault planes are

calculated under the given stress tensor within each

phase. Therefore, we have a set of 60 artificial fault/slip

data with monophase subsets related to three tectonic

phases equally mixed (Fig. 2; see appendix 3 of Shan

et al. (2003) for the whole data set). The application of

our algorithm to them gave the results listed in Table 1.

With a division number of one or two, the partition

coefficient is 0.89. The stress estimates are far from the

theoretical stresses, and thus meaningless. However, the

Table 1

Results of the application of our method to case 1. K is the partition coefficient defined in the text. f is defined as (s1 2 s2)/(s2 2 s3). See Table 2 for more

explanation. W is the percent of fault/slip data in some subsets that have the maximum membership with the subset

s1 (8) s2 (8) s3 (8) f K W

Bearing Plunge Bearing Plunge Bearing Plunge

Prescribed three subsets 1 180.0 10.0 89.0 5.7 329.9 78.5 2.0 33.33

2 140.0 5.0 235.0 44.9 45.0 44.7 2.0 33.33

3 100.0 1.0 195.0 78.7 9.8 11.3 2.0 33.33

Estimated one subset 1 165.5 3.9 257.5 27.3 67.9 62.4 2.0 100.00

Estimated two subsets 1 182.6 10.5 91.0 8.8 321.8 76.3 2.3 0.89 58.33

2 314.1 10.2 221.9 11.7 84.2 74.3 21.5 41.66

Estimated three subsets 1 180.0 10.0 89.0 5.7 329.9 78.5 2.0 1.00 33.33

2 140.0 5.0 235.0 44.9 45.0 44.7 2.0 33.33

3 100.0 1.0 195.0 78.7 9.8 11.3 2.0 33.33

Estimated four subsets 1 303.7 0.0 213.7 0.0 0.0 90.0 13.2 1.00 1.66

2 180.0 10.0 89.0 5.7 329.9 78.5 2.0 33.33

3 140.0 5.0 235.0 44.9 45.0 44.7 2.0 31.66

4 100.0 1.0 195.0 78.7 9.8 11.3 2.0 33.33

Fig. 2. Lower-hemisphere, equal-area projection of simulated fault/slip data in

case 1. Unfilled, half-filled and fully-filled circles represent the normal to fault

planes in the category of prescribed subset 1, 2 and 3, respectively. Short lines

with an end in the circle center represent the plunges of fault striations.
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partition coefficient increases with the division number, and

reaches one when the division number is three. In this case,

stress estimates match theoretical stresses closely. The

algorithm has successfully recognized the internal structure

of the fault/slip data. Even with a division number of four,

we still obtain identical stress estimates, but the new stress

estimate has the smallest number of data with maximum

membership in the relevant subset. There is no apparent

change in partition coefficient. This means that a division

number larger than three is not necessary to separate the

data set into meaningful subsets. Therefore, without any

restraints, we can accept as the best stress estimates those

with a division number of three.

3.2. Case two

The active NEE-trending Altyn Tagh fault is one of the

most outstanding strike-slip faults in central Asia (Cheng,

1994; Fig. 3). It is about 1600 km in length with a sinistral

slip of ca. 350 km, and defines the northern boundary of the

Fig. 3. Subsegmentation of the middle active Altyn Tagh fault, west of China (modified after Xie and Liu (1989)). Labeled circles are the locations for

measurement of fault/slip data.

Table 2

Stress estimates in differing locations (Xie and Liu, 1989). Stress ratio R is defined as (s1 2 s2)/(s1 2 s3). R and f are related as 1/f ¼ 1/R 2 1. Phase 0 took

place before the Cenozoic, and only phases 1 and 2 are neotectonic. Phase 1 is earlier than phase 2. See Fig. 3 for each location

Sub-segment Location Data number s1 (8) s2 (8) s3 (8) R Tectonic phase

Bearing Plunge Bearing Plunge Bearing Plunge

1 1 9 0.5 37.9 270.2 0.5 179.6 52.1 0.62 1

2 9 352.9 37.4 188.0 51.7 88.6 7.4 0.64 1

3 9 10.3 27.6 122.8 36.1 252.8 42.1 0.16 1

2 4 15 54.2 10.4 145.5 7.0 269.1 77.1 0.37 2

5 6 167.9 10.4 258.4 4.9 3.9 78.9 0.77 1

6 27 230.2 9.7 140.1 0.7 45.8 80.2 0.28 2

3 7 8 237.4 10.3 329.2 9.6 101.4 75.8 0.00 2

8 14 50.1 11.1 141.8 8.4 268.1 76.0 0.40 2

9 6 108.3 13.1 214.4 50.2 8.4 36.8 0.51 0

10 8 42.8 27.6 144.4 21.1 266.6 54.1 0.08 2

4 11 27 72.2 19.9 284.5 66.9 166.4 11.4 0.09 2

12 17 219.3 4.8 77.3 83.3 300.7 5.1 0.84 2

5 13 9 54.8 20.2 300.3 39.9 168.2 38.7 0.15 2

14 34 48.5 16.3 315.8 9.2 197.4 71.4 0.28 2
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Tibetan Plateau. During the Cenozoic this fault facilitated

the extrusion or escape of the thickened Tibetan Plateau

created by the continent–continent collision between India

and Eurasia (e.g. Molnar and Tapponnier, 1975; Tapponnier

et al., 1982; Clark and Royden, 2000).

The middle segment of the Altyn Tagh fault is

composed of parallel small-scale strike slip faults that

are, to a varying degree, overlapped (Fig. 3). Xie and

Liu (1989) divided the middle segment into five

subsegments, and in each subsegment measured fault/

slip data in fluvial and pluvial sediments of Cenozoic

age and to a lesser extent in subjacent older rocks. They

applied the ‘Etchecopar’ software to process the

measured data, and obtained two distinct phases, phase

1 and phase 2 (Table 2). The estimated maximum

principal stresses in the phases have a small plunge

angle, reflecting the compression regime in which fault

slip took place. Phase 1 has N–S compression while

phase 2 has E–W compression. Phase 1 occurred earlier

than phase 2 according to their geological study.

However, the ‘Etchecopar’ software uses the conven-

tional stress inversion method and does not have the ability

to separate heterogeneous data. The work of Xie and Liu

(1989) was based upon an implicit assumption that

deformation in the form of faulting is spatially hetero-

geneous and readily forgotten by subsequently overprinting

deformation.

The result of our algorithm applied to all of the measured

fault/slip data is shown in Table 3. In agreement with Xie

and Liu (1989), no matter what the division number is, the

estimated principal stresses tend to have a small angle of

plunge. With a division number of two, the partition

coefficient reaches the maximum. In this case, the bearing of

the maximum principal stress is 166.78 in subset 1 and 72.28

in subset 2, representing the approximately N–S and E–W

compression. This is consistent with the result of Xie and

Liu (1989). Furthermore, our result shows that the estimated

minimum principal stress is almost vertical in subset 1 and

horizontal in subset 2, and that the stress ratio is far larger in

subset 1 than subset 2.

4. Conclusion

Fault/slip data measured in the field are commonly

heterogeneous and indeterminable in nature. Particularly for

these reasons, the fuzzy C-lines clustering algorithm is

employed to separate heterogeneous fault/slip data into

many homogeneous subsets. This is feasible because each

homogeneous subset tends to have the distribution of a

dependent hyperplane in the sigma space. The normal to the

hyperplane is the optimal stress vector we solve for. The

proposed method allows estimation of both stress and division

from heterogeneous fault/slip data, for a given division

number. From a number of estimated divisions with varying

division number, the concept of a partition coefficient is

introduced to determine which division of the data set is the

best. The best division is generally considered to be that having

the maximum partition coefficient. Two examples were taken

to show the feasibility of the method.

Fuzzy clustering algorithms such as the one used in this

paper are extremely powerful in detecting internal structures

of a data set. We believe they will be of great value in

orientation analysis that relies heavily upon visual appreci-

ation (e.g. Ramsay, 1967). Even in stress estimation, more

sophisticated algorithms may be used, but this is beyond the

scope of the paper.

Acknowledgements

This research was supported by the CAS program

(KZCX2-113) and the Shandong NSF (Grant

Y98E08078). Most of the work was done in “Laboratory

for Numerical Simulation of Continental Deformation and

Dynamics” in the Changsha Institute of Geotectonics,

Chinese Academy of Sciences. Dr N. Fry at Cardiff

University, UK encouraged the first author to translate the

paper from Chinese, made a thorough review of the draft

and substantially improved the written English of it. This

paper was reviewed by J. Miller and R.J. Twiss who made

helpful suggestions.

Table 3

Results of the application of our method to case 2. W is the percent of fault/slip data in some subsets that have the maximum membership with the subset

s1 (8) s2 (8) s3 (8) f K W

Bearing Plunge Bearing Plunge Bearing Plunge

Estimated one subset 1 53.4 9.3 144.4 5.7 265.6 79.1 2.11 100.00

Estimated two subsets 1 166.7 0.7 256.9 16.1 74.5 73.9 1.51 0.82 50.00

2 72.2 4.2 230.7 85.5 342.0 1.7 110.93 50.00

Estimated three subsets 1 351.1 2.9 260.6 11.2 95.5 78.4 2.46 0.78 29.29

2 73.4 5.8 175.3 64.0 340.6 25.3 12.27 37.87

3 59.4 3.4 149.8 7.1 304.0 82.1 0.52 32.82
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3 227.0 3.6 136.7 6.0 347.9 83.0 1.27 19.69

4 52.8 28.5 148.1 9.7 255.0 59.6 1.03 20.70

Y. Shan et al. / Journal of Structural Geology 26 (2004) 919–925924



Appendix A

List of symbols and their definitions

Symbol Definition Comment

s Stress tensor See Eq. (1)
sij The element of the stress tensor,

i,j ¼ 1,2,3
See Eqs. (1)
and (2)

n The unit vector normal to the fault
plane

See Eq. (1)

ni The element of the vector n, i ¼ 1,2,3 See Eq. (2)
s The directional vector perpendicular to

the fault striation
See Eq. (1)

si The element of the vector s, i ¼ 1,2,3 See Eq. (2)
t The stress vector See Eqs. (4)

and (5)
b The vector of fault/slip datum
bi The element of the vector b,

i ¼ 1,2,…,5
See Eqs. (4)
and (7)–(9)

N The number of fault/slip data
Ai The matrix for the ith fault/slip datum,

i ¼ 1,2,…,N
See Eq. (4)

A The sum of Ai, i ¼ 1,2,…,N See Eq. (4)
F(t) The objective function for monophase

fault/slip data
See Eq. (4)

F(u,tm) The objective function for polyphase
fault/slip data

See Eq. (7)

P(u,tm) The composite objective function for
polyphase fault/slip data

See Eq. (8)

l The Lagrange parameter See Eq. (8)
C The division number See Eqs. (5)–(9)
tmi The ith stress estimate See Eqs. (7)–(9)
tpm The optimal stress estimates with the

membership given
tðhÞm The optimal stress estimates at the hth

iteration
D(tmi,bj) The Euler distance of the datum vector

bj to the stress estimate tmi,
j ¼ 1,2,…,N, i ¼ 1,2,…,c

See Eqs. (7)–(9)

k The weight exponent See Eqs. (7)–(9)
K Partition coefficient See Eq. (10)
h Iteration number
uij The membership of the datum vector bj

in the jth subset
See Eqs. (5)–(8)
and (10)

upij The optimal membership of the datum
vector bj in the jth subset, with the
stresses given

See Eq. (9)

u (h) The optimal membership at the hth
iteration

Sij A square of membership uij
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